Advanced Regression Analysis

Predictive Descriptive Prescriptive Strategic

Nick Mastronardi PhD, CEO

What Language You Speak Depends on Where You Come From

Undergraduate:

Math / Physics

Business Intelligence Engineer **Data Visualization**

Hosting Infrastructure

Graduate / Academic: Econ / OR

Private: Econ / Data Science Statistical Inference **Design of Experiment** Database Engineering

Predictive Descriptive Prescriptive Strategic

Care about Accuracy & Precision in Dependent / Outcome Variable

Weather, Missile Trajectories, Illegal Coastal Fisher

Total Sales for Supply Chain Replenishment

Predictive Polling in a Static Environment

 $\vec{\beta}$ min $\sum_{i=1}^{N} (y_i - \hat{y})^2$ $\vec{\gamma} = p_o + p_i + \sum_{i=1}^{N} (y_i - \hat{y})^2$ **Predictive**

Descriptive

Prescriptive Strategic

Descriptive Models

Causal Inference
Accuracy / Precision on inferred impact
of how A causes B

Gauss Markov Thm:

(we'll come back to this)

Predictive Descriptive Prescriptive Strategic

Prescriptive Models

Use Descriptive Models and Choice Constraints to Optimize Performance

erformance $(\vec{x} | \vec{\beta})$ st $(\vec{x} | \vec{\beta})$

Predictive Descriptive Prescriptive Strategic

Strategic Models

Interdependent Payoffs
Game Theoretic, eg Nash Equilibrium

The Future:

But let's not get ahead of where the biggest need is

Gauss Markov Theorem

Conditions under which, if satisfied, you can trust accuracy and precision of causal impact parameters in regression models.

And, if conditions aren't satisfied, gives insights to how you can adjust the regression model to recover accuracy and precision.

Gauss Markov Theorem

If none of the following things are true, then coefficients are:

Unbiased / Accurate

Efficient / Precise / Confident

Multicollinearity

Correlation in factors

Heteroskedasticity

Errors vary systematically with causal factors

Heteroskedasticity Errors vary systematically with causal factors

Autocorrelation Observations' errors are not independent across time

Variables

Omitted variables Extra variables

Improper Variables

Omitted variables, Extra variables

Model Mis-specification

Not the correct posited relationship between factors

Recovery High Level Description

Observation errors are not independent

Remove correlated component of errors

Omitted variables, Extra variables

Add in the right variables, Remove extraneous

Not the correct posited relationship between factors

Think hard, Be an industry expert, Be careful

rtecevery ringir zever zeeenphien	
Multicollinearity	Correlation in factors
	Ooooh!
Heteroskedasticity	Error varies systematically with factors
	Reweight emphases of observations

Autocorrelation

Improper Variables

Model Mis-specification

Air Force Reenlistment Labor supply elasticities

Name Date Decision Bonns other Sur

$$\gamma_i \in \{0,1\}$$

9 robid Regression

Amazon pricing

Voter behavior

$$max_{x_{j} \in \{x_{0}, x_{1}, x_{n}\}} U_{i}(x_{j}) = \vec{x}_{j} \cdot \vec{\beta}' + \delta_{j} + \varepsilon_{ij}$$

$$\vec{x}_0 \cdot \vec{\beta}' + \delta_0 + \varepsilon_{i0} > \vec{x}_1 \cdot \vec{\beta}' + \delta_1 + \varepsilon_{i1}$$

 $\varepsilon_{i0} = -\vec{x}_0 \cdot \vec{\beta}' - \delta_0$ $\varepsilon_{i1} = -\vec{x}_1 \cdot \vec{\beta}' - \delta_1$

 ε_{i1}

How Big Data and Increased Computational Capabilities are Changing Things

1. Ordinary Least Squares - (Generalized Method of Moments) - Maximum Likelihood Estimation

2. Model Iteration: Random Forests, Genetic Algorithms, Taylor/Fourier/Bessel Functional Bases

3. Oaxaca Blinder Regression Machine-Learning Hybrids to Identify Treatment Effects

4. Now that you can expect competitors to be employing these techniques - Strategic Effects