cloudera

Decoupling Decisions
with Apache Kafka

August, 2016

About Me

 Cloudera Kafka Software Engineer
» Distributed Systems Enthusiast
» Father to a 15 month old

™M grant@cloudera.com

W @gchenke
() github.com/granthenke

m linkedin.com/in/granthenke

cloudera

© Cloudera, Inc. All rights reserved.

2

Apache Kafka Decoupling Decisions
Introduction What?

Terminology

Guarantees

cloudera

=
= =

=
=
<> U

‘1':::
Getting Started

Command Line
Configurations
Choosing Partitions

© Cloudera, Inc. All rights reserved.

cloudera

Apache Kafka

A brief overview

What Is Kafka?

Kafka provides the functionality of a
messaging system, but with a unique design.

cloudera

What Is Kafka?

Kafka is a distributed, partitioned, replicated
commit log service.

cloudera

What Is Kafka?

Kafka is Fast:

A single Kafka broker can handle hundreds
of megabytes of reads and writes per second
from thousands of clients.

cloudera

What Is Kafka?

Kafka is Scalable:

Kafka is designed to allow a single cluster to
serve as the central data backbone for a
large organization.

cloudera

What Is Kafka?

Kafka is Scalable:
Kafka can be expanded without downtime.

cloudera

What Is Kafka?

Kafka is Durable:

Messages are persisted and replicated
within the cluster to prevent data loss.

cloudera

What Is Kafka?

Kafka is Durable:

Each broker can handle terabytes of
messages without performance impact.

cloudera

The Basics

« Kafka runs in a cluster. Nodes are
called brokers

 Producers push messages
- Consumers pull messages

[producer][producer }[producer]

kafka cluster

/ | \
[consumer] [consumer] [consumer]

cloudera

- Messages are organized into topics
- Topics are broken into partitions

- Partitions are replicated across the
brokers as replicas

Anatomy of a Topic

PartitionO [0 |12 3|4 |5]|6|7[8]|9|10]|1 (|12

Writes

r N

1
Partition10123456789:

Partiton2 |0 |1 12|34 |5|6]|7|8|9[10]11]121

Old » New

© Cloudera, Inc. All rights reserved. 12

Beyond Basics...

Messages
- Optionally be keyed in order to map to a
static partition

 Used if ordering within a partition is
needed

» Avoid otherwise (extra complexity,
skew, etc.)

- Location of a message is denoted by its
topic, partition & offset

- A partitions offset increases as
messages are appended

cloudera

Replicas
- A partition has 1 leader replica. The

others are followers.

- Followers are considered in-sync when:

- The replica is alive

« The replica is not “too far” behind the
leader (configurable)

- The group of in-sync replicas for a

partition is called the ISR (In-Sync
Replicas)

- Replicas map to physical locations on a

broker

© Cloudera, Inc. All rights reserved. 13

Kafka Guarantees

cloudera

Kafka Guarantees

WARNING: Guarantees can vary based on your
configuration choices.

cloudera

Kafka Guarantees: Message Ordering

- Messages sent to each partition will
be appended to the log in the order
they are sent

« Messages read from each partition
will be seen in the order stored in the

log

$
g

2
=
"-'l-..
=

C|0Udera © Cloudera, Inc. All rights reserved. 16

Kafka Guarantees: Message Delivery

- At-least-once: Messages are never lost but may be redelivered
 Duplicates can be minimized but not totally eliminated
- Generally only get duplicates during failure or rebalance scenarios

» [t’s a good practice to build pipelines with duplicates in mind regardless

C|0Udera © Cloudera, Inc. All rights reserved. 17

Kafka Guarantees: Message Safety

- Messages written to Kafka are durable and safe

« Once a published message is committed it will not be lost as long as one broker
that replicates the partition to which this message was written remains "alive”

» Only committed messages are ever given out to the consumer. This means that
the consumer need not worry about potentially seeing a message that could be
lost if the leader fails.

C|0Udera © Cloudera, Inc. All rights reserved. 18

cloudera

Decoupling Decisions

Flexible from the beginning

How It Starts

- Data pipelines start simple
- One or two data sources
» One backend application

Initial Decisions:
- How can | be successful quickly?

- What does this specific pipeline
need?

» Don’t prematurely optimize

cloudera

Client

—>| Backend

© Cloudera, Inc. All rights reserved.

20

Then Quickly...

- Multiple sources

Source Batch Backend
- Another backend application S Streaming
ource Backend
- Initial decisions need to change Source
Source

CIOUdera © Cloudera, Inc. All rights reserved. 21

And Eventually...

« More environments

- Backend applications feed other
backend applications

- You may also want to
« Experiment with new software
- Change data formats
- Move to a streaming architecture

cloudera

Source

Source

Streaming

Source

Backend

Source

© Cloudera, Inc. All rights reserved.

Batch Backend [

Cloud Backend [€—

QA Backend =

22

Technical Debt

- Early decisions made for that single
pipeline have impacted each system

added

- Because sources and applications are
tightly coupled change is difficult

 Progress becomes slower and slower
» The system has grown fragile

- Experimentation, growth, and
innovation is risky

© Cloudera, Inc. All rights reserved. 23

cloudera

Decision Types: Type 1 decisions

“Some decisions are consequential and
irreversible or nearly irreversible — one-way
doors — and these decisions must be made

methodically, carefully, slowly, with great
deliberation and consultation...” —Jeff Bezos

cloudera

Decision Types: Type 2 Decisions

“Type 2 decisions are changeable, reversible
—they’re two-way doors. If you’ve made a
suboptimal Type 2 decision, you don’t have

to live with the consequences for that
long.” —Jeff Bezos

cloudera

Kafka Is Here To Help!

§g kafka

cloudera

With Kafka

- A central backbone for the entire
system

» Decouples source and backend
systems

- Slow or failing consumers don’t
impact source system

- Adding new sources or consumers is
easy and low impact

cloudera

Source

Source

Source

Kafka

Source

Batch
Backend

Streaming
Backend

Cloud
Backend

QA
Backend

© Cloudera, Inc. All rights reserved.

27

Lets Make Some Changes

A WISE MAN
GHANGES HIS

MIND, A FOOL
NEVER WILL

CCCCCCCC

The Really Easy Changes

atch
source BchI:end
« Add new source or backend
« Process more data Source ! /) Streaming
» Move from batch to streaming Kafl \
Cloud
Source
- Change data source Backend
QA
Old Source Backand
New Source

CIOUdera © Cloudera, Inc. All rights reserved. 29

Change Data Format

- | would like to support avro (or thrift,
protobuf, xml, json, ...)

- Keep source data raw

» In a streaming application transform
formats

- Read from source-topic and produce
to source-topic-{format}

- This could also include lossy/
optimization transformations

cloudera

Source

Format
Conversion App

Source

Source

Kafka

Source

Batch
Backend

Streaming
Backend

Cloud
Backend

QA
Backend

© Cloudera, Inc. All rights reserved.

30

Change Business Logic

 Deploy new application and replay
the stream

- Great for testing and development

- Extremely useful for handling failures
and recovery too

cloudera

© Cloudera, Inc. All rights reserved. 31

Change Application Language

« There are well written clients in a lot

of programming languages Java' scala

» In the rare case your language of
choice doesn’t have a client, you can
use the binary wire protocol and
write one

IavaSCript

CIOUdera m © Cloudera, Inc. All rights reserved. 32

Change Processing Framework

- Many processing frameworks get
Kafka integration early on

« Because consumers don’t affect
source applications its safe to

xperiment
S 5 STORM

cloudera

N . TR
- _‘."‘ N ” ¢
. - 'r - - ’

—
g

THE ONLY

—

—

T =T

S
—

-

NG CONSTANT IS CHANGE.

Hi

S0 YOU HAVETO LEARN TO EMBRACE IT.

cloudera

Quick Start

Sounds great...but how do | use it?

Let’s Keep it Simple

36

© Cloudera, Inc. All rights reserved.

cloudera

Install Kafka

cloudera

Add Kaf
Customize Role Assignme
You can customize the role assignments

suffer.
You can also view the role assignmems

m Kafka Broker

Select hosts

ka gervice to Cluster 1
nts for Kafka

for your new service here,

=
by host. View BY Host

w Kafka MirrorMaker

gelect hosts

ﬂ Gateway

Select hosts

s performar\ce will

© Clo
udera, Inc. All rights reserved

37

cloudera

777
IIXIXXI?2+77

COMMAND LINE

7 +277

TIXIX777IIIXIZ?22?2 777422272 722721
IIIIIXI777II2I?22++2II2222+I 722227
T7IX2IIIIXT777IXI2X22222272+++++1 722217
TIX?22222IXIXI777I22I22: 42T 2=+4+4221 +I2227
TII?2~~~II?I22I2+wmm++2~I77 222272721 7?1217

T+t mmm=)7
T2244447
T224+++7
T22++++7
TIZ++427
TT7244+=++7
T2+++++7
TT724++++7
TT724mbms]
T724++=+7
T2=~t++7
TT4=ttmt7
TT+mttt+7
THmttmtT
TT7++++=+7
TIZ++2=+7
I?+=2++7
T24+++++7
T244m=m42m=7
Fhm—tttT
+++++++1
+HEE2442
2+ 42
PHHH2HHH
T24+=+2m=+
T2+ 4=t 2mm]
T24+++2+=7
T2424++4=7
T24++++4+4+7
T+2++++++7
T+++224++7
T24222444+7
TH++2+424=7
T2++++2++7
T2424=244+7
T4ttt +PmmT
T2++=++++7
T24+=++++7
bbbt T
+H+ 2+ T
T+24++++++7
Tt 44427
777777

777 7 1227

77272
7227
77227
77227
7227
72+7
T772+7
TI?2+7
I2727
7I2+7
71227
2?2+7
T~,,7
72.,7
T+3~7
T4~=~7
L g 7
77777XX2X7
T7II++2IX77
T22++277
7 772xX77
777IIIX
?771IIXXI7
77777IXIX
277IXI4+27
ZII+I+IX
TI+2I+++2
TI+274+4I+
TI+2IZ+2+
TI+2I++2+
TI+2I422+
T24+2I++=+7
T2+2I++++7
I?242T++++
I24+T++++7
T2++I+=++7
T242T4=+4+7
T24+IT 42447
I?72I+2I+
IXIIXIXXIX7

77
7227 7
22XXI?4+77
7 ?2+IXXI?7
2+ 7I?2IXIX7
2I?2+7 7IXIXIXII?
T T+++7 7JIIXIIII?
TIT++++7 77IXIIXIXIIXI?
I74+4+4 , IITIITIIIXI ==+
I7+=IIIXI?2224mmmmny
T7~22IXX2=z,,,=
T72+4,222=
T242724mm=
TI?mm] =2I2+
TI=+22222277
772222222+
+2++=: 21
I?,22+27
X?,?22227
??2,?22?21X
??,22277
X?,?22272
?22:22277
I?2~+2+IXI
I2=+++2X
I 2m4++++T
24+ttt
P4+t 4=?
2444 44~?
2ttt
PH++++ 4
FE T = e
24ttt
+Htttt+7
4=ttt 47
bbbt
bbbt T 7
TH++=tt++++

7 A~m2+2,=77
772=2 72=77
7I4+7 I=77
I=27777=7
TI=m242=

7. 2

© Cloudera, Inc. All rights reserved.

38

Create a topic & describe

kafka-topics --zookeeper my-zk-host:2181 --create --topic my-topic --partitions 10
--replication-factor 3

kafka-topics --zookeeper my-zk-host:2181 --describe --topic my-topic

Produce in one shell

vmstat -w -n -t 1 | kafka-console-producer --broker-list my-broker-host:9092 --
topic my-topic

Consume in a separate shell
kafka-console-consumer --zookeeper my-zk-host:2181 --topic my-topic

cloudera

© Cloudera, Inc. All rights reserved. 39

Create a topic & describe

kafka-topics --zookeeper my-zk-host:2181 --create --topic my-topic --partitions
10 --replication-factor 3

kafka-topics --zookeeper my-zk-host:2181 --describe --topic my-topic

Produce in one shell

vmstat -w -n -t 1 | kafka-console-producer --broker-list my-broker-host:9092 --
topic my-topic

Consume in a separate shell
kafka-console-consumer --zookeeper my-zk-host:2181 --topic my-topic

cloudera

© Cloudera, Inc. All rights reserved. 40

Create a topic & describe

kafka-topics --zookeeper my-zk-host:2181 --create --topic my-topic --partitions 10
--replication-factor 3

kafka-topics --zookeeper my-zk-host:2181 --describe --topic my-topic

Produce in one shell

vmstat -w -n -t 1 | kafka-console-producer --broker-list my-broker-host:9092 --
topic my-topic

Consume in a separate shell
kafka-console-consumer --zookeeper my-zk-host:2181 --topic my-topic

cloudera

© Cloudera, Inc. All rights reserved. 41

Create a topic & describe

kafka-topics --zookeeper my-zk-host:2181 --create --topic my-topic --partitions 10
--replication-factor 3

kafka-topics --zookeeper my-zk-host:2181 --describe --topic my-topic

Produce in one shell

vmstat -w -n -t 1 | kafka-console-producer --broker-list my-broker-host:9092 --
topic my-topic

Consume in a separate shell
kafka-console-consumer --zookeeper my-zk-host:2181 --topic my-topic

cloudera

© Cloudera, Inc. All rights reserved. 42

Kafka Configuration

A starting point

cloudera

© Cloudera, Inc.

All rights reserve

Flexible Configuration

 Tune for throughput or
safety

* At least once or at most
once

* Per topic overrides and
client overrides

CIOUdera © Cloudera, Inc. All rights reserved. a4

Broker Configuration

- 3 or more Brokers
- broker_max_heap_size=8GiB

- zookeeper.chroot=kafka
- auto.create.topics.enable=false
- If you must use it make sure you set
« num.partitions >= #OfBrokers
- default.replication.factor=3

« min.insync.replicas=2
- unclean.leader.election=false (default)

C|0Udera © Cloudera, Inc. All rights reserved. 45

Producer Configuration

- Use the new Java Producer

- acks=all

- retries=Integer. MAX_VALUE

- max.block.ms=Long.MAX_VALUE

- max.in.flight.requests.per.connection=1
- linger.ms=1000
e compression.type=snappy

C|0Udera © Cloudera, Inc. All rights reserved. 46

Consumer Configuration

- Use the new Java Consumer

- group.id represents the “Coordinated Application”
- Consumers within the group share the load

. auto.offset.reset = latest/earliest/none

- enable.auto.commit=false

C|0Udera © Cloudera, Inc. All rights reserved. a7

Choosing Partition Counts: Quick Pick

e Just getting started, don’t overthink it
* Don’t make the mistake of picking (1 partition)
* Don’t pick way too many (1000 partitions)

e Often a handwave choice of 25 to 100 partitions is a
good start

* Tune when you can understand your data and use case
better

cloudera

What’s Next?

Make something

YEOIERDAY

Getting started is the | 10U oAl
hardest part |

cloudera

cloudera

Thank you

Common Questions

cloudera

How do | size broker hardware?

Brokers
- Similar profile to data nodes
- Depends on what’s important
- Message Retention = Disk Size
« Client Throughput = Network Capacity
« Producer Throughput = Disk I/O
« Consumer Throughput = Memory

C|0Udera © Cloudera, Inc. All rights reserved. 52

Kafka Cardinality—What is large?

 Brokers: 3->15 per Cluster Partitions: 1->1000s per Topic
« Common to start with 3-5 e Clusters with up to 10k total
- Very large are around 30-40 nodes partitions are workable. Beyond

- Having many clusters is common that we don't aggressively test. [src]

« Consumer Groups: 1->100s active per

 Topics: 1->100s per Cluster
Cluster

 Could Consume 1 to all topics

C|0Udera © Cloudera, Inc. All rights reserved. 53

Large Messages

- Kafka is not designed for very large

messages
« Optimal performance ~10KB

- Could consider breaking up the
messages/files into smaller chunks

cloudera

ughput (Records/Second)

Thro

1800000

1600000

1400000

1200000

1000000

800000

600000

400000

200000

0

Record Size vs Producer Throughput (Records)

—

10 100 1000 10000 100000
Record Size (Bytes)

Throughput (MB/Second)

Record Size vs Producer Throughput (MBs)

400

300

250

200

/

/

100

/

50

-

/

10 100 1000 10000 100000
Record Size (Bytes)

© Cloudera, Inc. All rights reserved.

54

Should | use Raid 10 or JBOD?

RAID10 JBOD

- Can survive single disk failure - Single disk failure kills broker
. Single log directory - More available disk space

. Lower total /O - Higher write throughput

- Broker is not smart about balancing
partitions across disk

cloudera

© Cloudera, Inc. All rights reserved. 55

Do | need a separate Zookeeper for Kaftka?

* [t’s not required but preferred

- Kafka relies on Zookeeper for cluster
metadata & state

- Correct Zookeeper configuration is most
important

C|0Udera © Cloudera, Inc. All rights reserved. 56

/ookeeper Configuration

» ZooKeeper's transaction log must be on a dedicated device (A dedicated
partition is not enough) for optimal performance

- ZooKeeper writes the log sequentially, without seeking
- Set datalogDir to point to a directory on that device
- Make sure to point dataDir to a directory not residing on that device

» Do not put ZooKeeper in a situation that can cause a swap

- Therefore, make certain that the maximum heap size given to ZooKeeper is
not bigger than the amount of real memory available to ZooKeeper

CIOUdera © Cloudera, Inc. All rights reserved. 57

Choosing Partition Counts

* A topic partition is the unit of parallelism in Kafka

* |t is easier to increase partitions than it is reduce them
*Especially when using keyed messages

*Consumers are assigned partitions to consume
*They can’t split/share partitions
*Parallelism is bounded by the number of partitions

cloudera

Choosing Partition Counts: Quick Pick

e Just getting started, don’t overthink it
* Don’t make the mistake of picking (1 partition)
* Don’t pick way too many (1000 partitions)

e Often a handwave choice of 25 to 100 partitions is a
good start

* Tune when you can understand your data and use case
better

cloudera

Choosing Partition Counts: Estimation

Given:

* pt=production throughput per partition

* ct=consumption throughput per partition
e tt =total throughput you want to achieve
* pc =the minimum partition count

Then:

* pc>= max(tt/pt, tt/ct)

cloudera

© Cloudera, Inc.

All rights reserve

. 60

Choosing Partition Counts: Tools

e Kafka includes rudimentary benchmarking tools to help you get a
rough estimate

» kafka-producer-perft-test.sh (kafka.tools.ConsumerPerformance)
e kafka-consumer-perf-test.sh (kafka.tools.ProducerPerformance)
e kafka.tools.EndToEndLatency

e Use with kafka-run-class.sh
* Nothing is more accurate than a real application
* With real/representative data

C|0Udera © Cloudera, Inc. All rights reserved. 1

How do | manage Schemas?

* A big topic with enough content for its own talk
* Options

*Schema Registry

*Source Controlled Dependency

Static "Envelop Schema”
{

“type": "record”, "name": "Event",
“fields": [
{ "name": "headers", "type": { "type": "map"”, "values": "string" } },
{ "name": "fields", "type": { "type": "map"”, "values": "bytes" } }
]
}

C|0Udera © Cloudera, Inc. All rights reserved. 62

cloudera

Thank you

