
1	©	Cloudera,	Inc.	All	rights	reserved.	

Decoupling	Decisions		
with	Apache	Ka<a	
August,	2016	



2	©	Cloudera,	Inc.	All	rights	reserved.	

About	Me	

linkedin.com/in/granthenke	
github.com/granthenke	
@gchenke	
grant@cloudera.com	

• Cloudera	Ka<a	SoGware	Engineer	
• Distributed	Systems	Enthusiast	
•  Father	to	a	15	month	old	



3	©	Cloudera,	Inc.	All	rights	reserved.	

Agenda	

IntroducMon	
Terminology	
Guarantees	
	
	

What?	
	

Command	Line	
ConfiguraMons	
Choosing	ParMMons	
	

Apache	Ka<a	
	

Decoupling	Decisions	 GeUng	Started	



4	©	Cloudera,	Inc.	All	rights	reserved.	

Apache	Ka<a	
A	brief	overview	



5	©	Cloudera,	Inc.	All	rights	reserved.	

What	Is	Ka<a?	
	

Ka<a	provides	the	funcMonality	of	a	
messaging	system,	but	with	a	unique	design.	
	
	



6	©	Cloudera,	Inc.	All	rights	reserved.	

What	Is	Ka<a?	
	

Ka<a	is	a	distributed,	parMMoned,	replicated	
commit	log	service.		



7	©	Cloudera,	Inc.	All	rights	reserved.	

What	Is	Ka<a?	
	

Ka#a	is	Fast:	
A	single	Ka<a	broker	can	handle	hundreds	
of	megabytes	of	reads	and	writes	per	second	

from	thousands	of	clients.		



8	©	Cloudera,	Inc.	All	rights	reserved.	

What	Is	Ka<a?	
	

Ka#a	is	Scalable:	
Ka<a	is	designed	to	allow	a	single	cluster	to	
serve	as	the	central	data	backbone	for	a	

large	organizaMon.	



9	©	Cloudera,	Inc.	All	rights	reserved.	

What	Is	Ka<a?	
	

Ka#a	is	Scalable:	
Ka<a	can	be	expanded	without	downMme.	



10	©	Cloudera,	Inc.	All	rights	reserved.	

What	Is	Ka<a?	
	

Ka#a	is	Durable:	
Messages	are	persisted	and	replicated	
within	the	cluster	to	prevent	data	loss.		



11	©	Cloudera,	Inc.	All	rights	reserved.	

What	Is	Ka<a?	
	

Ka#a	is	Durable:	
Each	broker	can	handle	terabytes	of	

messages	without	performance	impact.	



12	©	Cloudera,	Inc.	All	rights	reserved.	

• Messages	are	organized	into	topics	
• Topics	are	broken	into	par**ons	
• Par88ons	are	replicated	across	the	
brokers	as	replicas	
	

• Ka<a	runs	in	a	cluster.	Nodes	are	
called	brokers	
• Producers	push	messages	
• Consumers	pull	messages	

The	Basics	



13	©	Cloudera,	Inc.	All	rights	reserved.	

Replicas	
•  A	parMMon	has	1	leader	replica.	The	
others	are	followers.	
•  Followers	are	considered	in-sync	when:	
•  The	replica	is	alive	
•  The	replica	is	not	“too	far”	behind	the	
leader	(configurable)	

•  The	group	of	in-sync	replicas	for	a	
parMMon	is	called	the	ISR	(In-Sync	
Replicas)	
•  Replicas	map	to	physical	locaMons	on	a	
broker	

Messages	
• OpMonally	be	keyed	in	order	to	map	to	a	
staMc	par88on	
• Used	if	ordering	within	a	parMMon	is	
needed	
• Avoid	otherwise	(extra	complexity,	
skew,	etc.)	

•  LocaMon	of	a	message		is	denoted	by	its	
topic,	parMMon	&	offset	
• A	parMMons	offset	increases	as	
messages	are	appended	

Beyond	Basics…	



14	©	Cloudera,	Inc.	All	rights	reserved.	

Ka<a	Guarantees	



15	©	Cloudera,	Inc.	All	rights	reserved.	

Ka<a	Guarantees	

WARNING:	Guarantees	can	vary	based	on	your	
configura8on	choices.		

	



16	©	Cloudera,	Inc.	All	rights	reserved.	

• Messages	sent	to	each	parMMon	will	
be	appended	to	the	log	in	the	order	
they	are	sent	

• Messages	read	from	each	parMMon	
will	be	seen	in	the	order	stored	in	the	
log	

Ka<a	Guarantees:	Message	Ordering	



17	©	Cloudera,	Inc.	All	rights	reserved.	

Ka<a	Guarantees:	Message	Delivery	

• At-least-once:	Messages	are	never	lost	but	may	be	redelivered	
	
• Duplicates	can	be	minimized	but	not	totally	eliminated	

• Generally	only	get	duplicates	during	failure	or	rebalance	scenarios	
	
•  It’s	a	good	pracMce	to	build	pipelines	with	duplicates	in	mind	regardless	



18	©	Cloudera,	Inc.	All	rights	reserved.	

Ka<a	Guarantees:	Message	Safety		

• Messages	wrimen	to	Ka<a	are	durable	and	safe	

• Once	a	published	message	is	commimed	it	will	not	be	lost	as	long	as	one	broker	
that	replicates	the	parMMon	to	which	this	message	was	wrimen	remains	"alive”	

• Only	commimed	messages	are	ever	given	out	to	the	consumer.	This	means	that	
the	consumer	need	not	worry	about	potenMally	seeing	a	message	that	could	be	
lost	if	the	leader	fails.		



19	©	Cloudera,	Inc.	All	rights	reserved.	

Decoupling	Decisions	
Flexible	from	the	beginning	



20	©	Cloudera,	Inc.	All	rights	reserved.	

• Data	pipelines	start	simple	
• One	or	two	data	sources	
• One	backend	applicaMon	

Ini8al	Decisions:	
• How	can	I	be	successful	quickly?	
• What	does	this	specific	pipeline	
need?	
• Don’t	prematurely	opMmize	
	
	
	

How	It	Starts	

Client	 Backend	



21	©	Cloudera,	Inc.	All	rights	reserved.	

• MulMple	sources	

• Another	backend	applicaMon	

•  IniMal	decisions	need	to	change	

Then	Quickly…	

Source	 Batch	Backend	

Source	

Source	

Source	

Streaming	
Backend	



22	©	Cloudera,	Inc.	All	rights	reserved.	

• More	environments	

• Backend	applicaMons	feed	other	
backend	applicaMons	

• You	may	also	want	to	
• Experiment	with	new	soGware	
• Change	data	formats	
• Move	to	a	streaming	architecture	

And	Eventually…	

Source	 Batch	Backend	

Source	

Source	

Source	

Streaming	
Backend	

Cloud	Backend	

QA	Backend	



23	©	Cloudera,	Inc.	All	rights	reserved.	

• Early	decisions	made	for	that	single	
pipeline	have	impacted	each	system	
added		
• Because	sources	and	applicaMons	are	
Mghtly	coupled	change	is	difficult	
• Progress	becomes	slower	and	slower	
• The	system	has	grown	fragile	
• ExperimentaMon,	growth,	and	
innovaMon	is	risky	

Technical	Debt	



24	©	Cloudera,	Inc.	All	rights	reserved.	

Decision	Types:	Type	1	decisions	

“Some	decisions	are	consequenMal	and	
irreversible	or	nearly	irreversible	–	one-way	
doors	–	and	these	decisions	must	be	made	
methodically,	carefully,	slowly,	with	great	

deliberaMon	and	consultaMon…”	—Jeff	Bezos	



25	©	Cloudera,	Inc.	All	rights	reserved.	

Decision	Types:	Type	2	Decisions	

“Type	2	decisions	are	changeable,	reversible	
–	they’re	two-way	doors.	If	you’ve	made	a	
subopMmal	Type	2	decision,	you	don’t	have	

to	live	with	the	consequences	for	that	
long.”—Jeff	Bezos	



26	©	Cloudera,	Inc.	All	rights	reserved.	

Ka<a	Is	Here	To	Help!	

	
	



27	©	Cloudera,	Inc.	All	rights	reserved.	

• A	central	backbone	for	the	enMre	
system	
• Decouples	source	and	backend	
systems	
• Slow	or	failing	consumers	don’t	
impact	source	system	

• Adding	new	sources	or	consumers	is	
easy	and	low	impact	

With	Ka<a	

Source	 Batch	
Backend	

Source	

Source	

Source	

Streaming	
Backend	

Cloud	
Backend	

QA	
Backend	

Ka<a	



28	©	Cloudera,	Inc.	All	rights	reserved.	

Lets	Make	Some	Changes	

	



29	©	Cloudera,	Inc.	All	rights	reserved.	

• Add	new	source	or	backend	
• Process	more	data	
• Move	from	batch	to	streaming	
• Change	data	source	

The	Really	Easy	Changes	

Batch	
Backend	Batch	

Backend	
Source	
Source	

Ka<a	

Source	 Batch	
Backend	

Source	

Source	

Old	Source	

Streaming	
Backend	

Cloud	
Backend	

QA	
Backend	

Ka<a	
Ka<a	

New	Source	



30	©	Cloudera,	Inc.	All	rights	reserved.	

•  I	would	like	to	support	avro	(or	thriG,	
protobuf,	xml,	json,	…)	
• Keep	source	data	raw	
•  In	a	streaming	applicaMon	transform	
formats	
• Read	from	source-topic	and	produce	
to	source-topic-{format}	
• This	could	also	include	lossy/
opMmizaMon	transformaMons	
	

Change	Data	Format	

Source	 Batch	
Backend	

Source	

Source	

Source	

Streaming	
Backend	

Cloud	
Backend	

QA	
Backend	

Ka<a	

Format	
Conversion	App	



31	©	Cloudera,	Inc.	All	rights	reserved.	

• Deploy	new	applicaMon	and	replay	
the	stream	

• Great	for	tesMng	and	development	

• Extremely	useful	for	handling	failures	
and	recovery	too	
	

Change	Business	Logic	



32	©	Cloudera,	Inc.	All	rights	reserved.	

• There	are	well	wrimen	clients	in	a	lot	
of	programming	languages	

•  In	the	rare	case	your	language	of	
choice	doesn’t	have	a	client,	you	can	
use	the	binary	wire	protocol	and	
write	one	

Change	ApplicaMon	Language	



33	©	Cloudera,	Inc.	All	rights	reserved.	

• Many	processing	frameworks	get	
Ka<a	integraMon	early	on	

• Because	consumers	don’t	affect	
source	applicaMons	its	safe	to	
experiment	

Change	Processing	Framework	

Streams 



34	©	Cloudera,	Inc.	All	rights	reserved.	



35	©	Cloudera,	Inc.	All	rights	reserved.	

Quick	Start	
Sounds	great...but	how	do	I	use	it?	



36	©	Cloudera,	Inc.	All	rights	reserved.	

Let’s	Keep	it	Simple	



37	©	Cloudera,	Inc.	All	rights	reserved.	

Install	Ka<a	

>	wget	h2
p://apach

e.claz.org
/ka9a/0.

10.0.0/ka
9a_2.11-

0.10.0.0.t
gz	

>	tar	-xzf	
ka9a_2.1

1-0.10.0.0
.tgz	

>	cd	ka9a
_2.11-0.1

0.0.0	
>	brew	install	ka<a	



38	©	Cloudera,	Inc.	All	rights	reserved.	

Start	with	the	CLI	tools	



39	©	Cloudera,	Inc.	All	rights	reserved.	

#	Create	a	topic	&	describe	
ka<a-topics	--zookeeper	my-zk-host:2181	--create	--topic	my-topic	--parMMons	10	
--replicaMon-factor	3	
ka<a-topics	--zookeeper	my-zk-host:2181	--describe	--topic	my-topic	
	
#	Produce	in	one	shell	
vmstat	-w	-n	-t	1	|	ka<a-console-producer	--broker-list	my-broker-host:9092	--
topic	my-topic	
	
#	Consume	in	a	separate	shell	
ka<a-console-consumer	--zookeeper	my-zk-host:2181	--topic	my-topic	



40	©	Cloudera,	Inc.	All	rights	reserved.	

#	Create	a	topic	&	describe	
ka#a-topics	--zookeeper	my-zk-host:2181	--create	--topic	my-topic	--par88ons	
10	--replica8on-factor	3	
ka#a-topics	--zookeeper	my-zk-host:2181	--describe	--topic	my-topic	
	
#	Produce	in	one	shell	
vmstat	-w	-n	-t	1	|	ka<a-console-producer	--broker-list	my-broker-host:9092	--
topic	my-topic	
	
#	Consume	in	a	separate	shell	
ka<a-console-consumer	--zookeeper	my-zk-host:2181	--topic	my-topic	



41	©	Cloudera,	Inc.	All	rights	reserved.	

#	Create	a	topic	&	describe	
ka<a-topics	--zookeeper	my-zk-host:2181	--create	--topic	my-topic	--parMMons	10	
--replicaMon-factor	3	
ka<a-topics	--zookeeper	my-zk-host:2181	--describe	--topic	my-topic	
	
#	Produce	in	one	shell	
vmstat	-w	-n	-t	1	|	ka#a-console-producer	--broker-list	my-broker-host:9092	--
topic	my-topic	
	
#	Consume	in	a	separate	shell	
ka<a-console-consumer	--zookeeper	my-zk-host:2181	--topic	my-topic	



42	©	Cloudera,	Inc.	All	rights	reserved.	

#	Create	a	topic	&	describe	
ka<a-topics	--zookeeper	my-zk-host:2181	--create	--topic	my-topic	--parMMons	10	
--replicaMon-factor	3	
ka<a-topics	--zookeeper	my-zk-host:2181	--describe	--topic	my-topic	
	
#	Produce	in	one	shell	
vmstat	-w	-n	-t	1	|	ka<a-console-producer	--broker-list	my-broker-host:9092	--
topic	my-topic	
	
#	Consume	in	a	separate	shell	
ka#a-console-consumer	--zookeeper	my-zk-host:2181	--topic	my-topic	



43	©	Cloudera,	Inc.	All	rights	reserved.	

Ka<a	ConfiguraMon	
A	starMng	point	



44	©	Cloudera,	Inc.	All	rights	reserved.	

•  Tune	for	throughput	or	
safety	

•  At	least	once	or	at	most	
once	

•  Per	topic	overrides	and	
client	overrides	

	

Flexible	ConfiguraMon	



45	©	Cloudera,	Inc.	All	rights	reserved.	

Broker	ConfiguraMon	

• 3	or	more	Brokers	
• broker_max_heap_size=8GiB	
•  zookeeper.chroot=ka<a	
• auto.create.topics.enable=false	
•  If	you	must	use	it	make	sure	you	set	
• num.parMMons	>=	#OfBrokers	
• default.replicaMon.factor=3	

• min.insync.replicas=2	
• unclean.leader.elecMon=false	(default)	



46	©	Cloudera,	Inc.	All	rights	reserved.	

Producer	ConfiguraMon	

• Use	the	new	Java	Producer	
• acks=all	
•  retries=Integer.MAX_VALUE	
• max.block.ms=Long.MAX_VALUE	
• max.in.flight.requests.per.connecMon=1	
•  linger.ms=1000	
•  compression.type=snappy	



47	©	Cloudera,	Inc.	All	rights	reserved.	

Consumer	ConfiguraMon	

• Use	the	new	Java	Consumer	
•  group.id	represents	the	“Coordinated	ApplicaMon”	
• Consumers	within	the	group	share	the	load	

• auto.offset.reset	=	latest/earliest/none	
• enable.auto.commit=false	



48	©	Cloudera,	Inc.	All	rights	reserved.	

Choosing	ParMMon	Counts:	Quick	Pick	

•  Just	geUng	started,	don’t	overthink	it	
•  Don’t	make	the	mistake	of	picking	(1	parMMon)	
•  Don’t	pick	way	too	many	(1000	parMMons)	
•  OGen	a	handwave	choice	of	25	to	100	parMMons	is	a	
good	start	

•  Tune	when	you	can	understand	your	data	and	use	case	
bemer	

	
	
	



49	©	Cloudera,	Inc.	All	rights	reserved.	

	
Make	something	

GeUng	started	is	the	
hardest	part	

What’s	Next?	



50	©	Cloudera,	Inc.	All	rights	reserved.	

Thank	you	



51	©	Cloudera,	Inc.	All	rights	reserved.	

Common	QuesMons	



52	©	Cloudera,	Inc.	All	rights	reserved.	

How	do	I	size	broker	hardware?	

Brokers	
•  Similar	profile	to	data	nodes	
•  Depends	on	what’s	important	

•  Message	RetenMon	=	Disk	Size	
•  Client	Throughput	=	Network	Capacity	
•  Producer	Throughput	=	Disk	I/O	
•  Consumer	Throughput	=	Memory	



53	©	Cloudera,	Inc.	All	rights	reserved.	

• Brokers:	3->15	per	Cluster	
• Common	to	start	with	3-5	
• Very	large	are	around	30-40	nodes	
• Having	many	clusters	is	common	

• Topics:	1->100s	per	Cluster	

• ParMMons:	1->1000s	per	Topic		
• Clusters	with	up	to	10k	total	
parMMons	are	workable.	Beyond	
that	we	don't	aggressively	test.	[src]	

• Consumer	Groups:	1->100s	acMve	per	
Cluster		
• Could	Consume	1	to	all	topics		

Ka<a	Cardinality—What	is	large?	



54	©	Cloudera,	Inc.	All	rights	reserved.	

• Ka<a	is	not	designed	for	very	large	
messages	
• OpMmal	performance	~10KB	
• Could	consider	breaking	up	the	
messages/files	into	smaller	chunks	

Large	Messages	



55	©	Cloudera,	Inc.	All	rights	reserved.	

Should	I	use	Raid	10	or	JBOD?	

RAID10	
• Can	survive	single	disk	failure	
•  Single	log	directory	
•  Lower	total	I/O	

JBOD	
•  Single	disk	failure	kills	broker	
•  More	available	disk	space	
•  Higher	write	throughput	
•  Broker	is	not	smart	about	balancing	
parMMons	across	disk	



56	©	Cloudera,	Inc.	All	rights	reserved.	

Do	I	need	a	separate	Zookeeper	for	Ka<a?	

•  It’s	not	required	but	preferred	
	
• Ka<a	relies	on	Zookeeper	for	cluster	
metadata	&	state	
	
• Correct	Zookeeper	configuraMon	is	most	
important	



57	©	Cloudera,	Inc.	All	rights	reserved.	

Zookeeper	ConfiguraMon	

•  ZooKeeper's	transacMon	log	must	be	on	a	dedicated	device	(A	dedicated	
parMMon	is	not	enough)	for	opMmal	performance		
•  ZooKeeper	writes	the	log	sequenMally,	without	seeking		
•  Set	dataLogDir	to	point	to	a	directory	on	that	device	
•  Make	sure	to	point	dataDir	to	a	directory	not	residing	on	that	device	

	
•  Do	not	put	ZooKeeper	in	a	situaMon	that	can	cause	a	swap	

•  Therefore,	make	certain	that	the	maximum	heap	size	given	to	ZooKeeper	is	
not	bigger	than	the	amount	of	real	memory	available	to	ZooKeeper	

	
	



58	©	Cloudera,	Inc.	All	rights	reserved.	

Choosing	ParMMon	Counts	

• A	topic	parMMon	is	the	unit	of	parallelism	in	Ka<a	
•  It	is	easier	to	increase	parMMons	than	it	is	reduce	them	
• Especially	when	using	keyed	messages	
• Consumers	are	assigned	parMMons	to	consume	
• They	can’t	split/share	parMMons	
• Parallelism	is	bounded	by	the	number	of	parMMons	

	
	
	



59	©	Cloudera,	Inc.	All	rights	reserved.	

Choosing	ParMMon	Counts:	Quick	Pick	

•  Just	geUng	started,	don’t	overthink	it	
•  Don’t	make	the	mistake	of	picking	(1	parMMon)	
•  Don’t	pick	way	too	many	(1000	parMMons)	
•  OGen	a	handwave	choice	of	25	to	100	parMMons	is	a	
good	start	

•  Tune	when	you	can	understand	your	data	and	use	case	
bemer	

	
	
	



60	©	Cloudera,	Inc.	All	rights	reserved.	

Choosing	ParMMon	Counts:	EsMmaMon	

Given:	
•  pt	=	producMon	throughput	per	parMMon		
•  ct	=	consumpMon	throughput	per	parMMon	
•  m	=	total	throughput	you	want	to	achieve	
•  pc	=	the	minimum	parMMon	count	
Then:		
•  pc	>=	max(m/pt,	m/ct)	

	
	
	
	



61	©	Cloudera,	Inc.	All	rights	reserved.	

Choosing	ParMMon	Counts:	Tools	

•  Ka<a	includes	rudimentary	benchmarking	tools	to	help	you	get	a	
rough	esMmate	
•  ka<a-producer-perG-test.sh	(ka<a.tools.ConsumerPerformance)	
•  ka<a-consumer-perf-test.sh	(ka<a.tools.ProducerPerformance)	
•  ka<a.tools.EndToEndLatency	
•  Use	with	ka<a-run-class.sh	

•  Nothing	is	more	accurate	than	a	real	applicaMon	
•  With	real/representaMve	data	

	
	
	
	



62	©	Cloudera,	Inc.	All	rights	reserved.	

How	do	I	manage	Schemas?	

• A	big	topic	with	enough	content	for	its	own	talk	
• OpMons	
• Schema	Registry	
• Source	Controlled	Dependency	
• StaMc	"Envelop	Schema”	



63	©	Cloudera,	Inc.	All	rights	reserved.	

Thank	you	


