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Apache Kafka

A brief overview




What Is Kafka?

Kafka provides the functionality of a
messaging system, but with a unique design.
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What Is Kafka?

Kafka is a distributed, partitioned, replicated
commit log service.
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What Is Kafka?

Kafka is Fast:

A single Kafka broker can handle hundreds
of megabytes of reads and writes per second
from thousands of clients.
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What Is Kafka?

Kafka is Scalable:

Kafka is designed to allow a single cluster to
serve as the central data backbone for a
large organization.
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What Is Kafka?

Kafka is Scalable:
Kafka can be expanded without downtime.
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What Is Kafka?

Kafka is Durable:

Messages are persisted and replicated
within the cluster to prevent data loss.
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What Is Kafka?

Kafka is Durable:

Each broker can handle terabytes of
messages without performance impact.
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The Basics

« Kafka runs in a cluster. Nodes are
called brokers

 Producers push messages
- Consumers pull messages

[ producer ][ producer }[ producer ]

kafka cluster

/ | \
[ consumer ] [ consumer ] [ consumer ]
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- Messages are organized into topics
- Topics are broken into partitions

- Partitions are replicated across the
brokers as replicas

Anatomy of a Topic

PartitionO [0 |12 3|4 |5]|6|7[8]|9|10]|1 (|12

Writes

r N

1
Partition10123456789:

Partiton2 |0 |1 12|34 |5|6]|7|8|9[10]11]121

Old » New
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Beyond Basics...

Messages
- Optionally be keyed in order to map to a
static partition

 Used if ordering within a partition is
needed

» Avoid otherwise (extra complexity,
skew, etc.)

- Location of a message is denoted by its
topic, partition & offset

- A partitions offset increases as
messages are appended

cloudera

Replicas
- A partition has 1 leader replica. The

others are followers.

- Followers are considered in-sync when:

- The replica is alive

« The replica is not “too far” behind the
leader (configurable)

- The group of in-sync replicas for a

partition is called the ISR (In-Sync
Replicas)

- Replicas map to physical locations on a

broker
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Kafka Guarantees
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Kafka Guarantees

WARNING: Guarantees can vary based on your
configuration choices.
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Kafka Guarantees: Message Ordering

- Messages sent to each partition will
be appended to the log in the order
they are sent

« Messages read from each partition
will be seen in the order stored in the

log
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Kafka Guarantees: Message Delivery

- At-least-once: Messages are never lost but may be redelivered
 Duplicates can be minimized but not totally eliminated
- Generally only get duplicates during failure or rebalance scenarios

» [t’s a good practice to build pipelines with duplicates in mind regardless
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Kafka Guarantees: Message Safety

- Messages written to Kafka are durable and safe

« Once a published message is committed it will not be lost as long as one broker
that replicates the partition to which this message was written remains "alive”

» Only committed messages are ever given out to the consumer. This means that
the consumer need not worry about potentially seeing a message that could be
lost if the leader fails.
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Decoupling Decisions

Flexible from the beginning




How It Starts

- Data pipelines start simple
- One or two data sources
» One backend application

Initial Decisions:
- How can | be successful quickly?

- What does this specific pipeline
need?

» Don’t prematurely optimize

cloudera
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Then Quickly...

- Multiple sources

Source Batch Backend
- Another backend application S Streaming
ource Backend
- Initial decisions need to change Source
Source

CIOUdera © Cloudera, Inc. All rights reserved. 21



And Eventually...

« More environments

- Backend applications feed other
backend applications

- You may also want to
« Experiment with new software
- Change data formats
- Move to a streaming architecture

cloudera

Source

Source

Streaming

Source

Backend

Source
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Technical Debt

- Early decisions made for that single
pipeline have impacted each system

added

- Because sources and applications are
tightly coupled change is difficult

 Progress becomes slower and slower
» The system has grown fragile

- Experimentation, growth, and
innovation is risky
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Decision Types: Type 1 decisions

“Some decisions are consequential and
irreversible or nearly irreversible — one-way
doors — and these decisions must be made

methodically, carefully, slowly, with great
deliberation and consultation...” —Jeff Bezos
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Decision Types: Type 2 Decisions

“Type 2 decisions are changeable, reversible
—they’re two-way doors. If you’ve made a
suboptimal Type 2 decision, you don’t have

to live with the consequences for that
long.” —Jeff Bezos
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Kafka Is Here To Help!

§g kafka
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With Kafka

- A central backbone for the entire
system

» Decouples source and backend
systems

- Slow or failing consumers don’t
impact source system

- Adding new sources or consumers is
easy and low impact

cloudera
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Lets Make Some Changes

A WISE MAN
GHANGES HIS

MIND, A FOOL
NEVER WILL

CCCCCCCC



The Really Easy Changes

atch
source BchI:end
« Add new source or backend
« Process more data Source ! /) Streaming
» Move from batch to streaming Kafl \
Cloud
Source
- Change data source Backend
QA
Old Source Backand
New Source
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Change Data Format

- | would like to support avro (or thrift,
protobuf, xml, json, ...)

- Keep source data raw

» In a streaming application transform
formats

- Read from source-topic and produce
to source-topic-{format}

- This could also include lossy/
optimization transformations

cloudera
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Change Business Logic

 Deploy new application and replay
the stream

- Great for testing and development

- Extremely useful for handling failures
and recovery too

cloudera
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Change Application Language

« There are well written clients in a lot

of programming languages Java' scala

» In the rare case your language of
choice doesn’t have a client, you can
use the binary wire protocol and
write one

IavaSCript
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Change Processing Framework

- Many processing frameworks get
Kafka integration early on

« Because consumers don’t affect
source applications its safe to

xperiment
S 5 STORM
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Quick Start

Sounds great...but how do | use it?




Let’s Keep it Simple

36
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Install Kafka
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Add Kaf
Customize Role Assignme
You can customize the role assignments

suffer.
You can also view the role assignmems

m Kafka Broker

Select hosts

ka gervice to Cluster 1
nts for Kafka

for your new service here,

=
by host. View BY Host

w Kafka MirrorMaker

gelect hosts

ﬂ Gateway

Select hosts

s performar\ce will
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# Create a topic & describe

kafka-topics --zookeeper my-zk-host:2181 --create --topic my-topic --partitions 10
--replication-factor 3

kafka-topics --zookeeper my-zk-host:2181 --describe --topic my-topic

# Produce in one shell

vmstat -w -n -t 1 | kafka-console-producer --broker-list my-broker-host:9092 --
topic my-topic

# Consume in a separate shell
kafka-console-consumer --zookeeper my-zk-host:2181 --topic my-topic

cloudera
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# Create a topic & describe

kafka-topics --zookeeper my-zk-host:2181 --create --topic my-topic --partitions
10 --replication-factor 3

kafka-topics --zookeeper my-zk-host:2181 --describe --topic my-topic

# Produce in one shell

vmstat -w -n -t 1 | kafka-console-producer --broker-list my-broker-host:9092 --
topic my-topic

# Consume in a separate shell
kafka-console-consumer --zookeeper my-zk-host:2181 --topic my-topic

cloudera
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# Create a topic & describe

kafka-topics --zookeeper my-zk-host:2181 --create --topic my-topic --partitions 10
--replication-factor 3

kafka-topics --zookeeper my-zk-host:2181 --describe --topic my-topic

# Produce in one shell

vmstat -w -n -t 1 | kafka-console-producer --broker-list my-broker-host:9092 --
topic my-topic

# Consume in a separate shell
kafka-console-consumer --zookeeper my-zk-host:2181 --topic my-topic

cloudera
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# Create a topic & describe

kafka-topics --zookeeper my-zk-host:2181 --create --topic my-topic --partitions 10
--replication-factor 3

kafka-topics --zookeeper my-zk-host:2181 --describe --topic my-topic

# Produce in one shell

vmstat -w -n -t 1 | kafka-console-producer --broker-list my-broker-host:9092 --
topic my-topic

# Consume in a separate shell
kafka-console-consumer --zookeeper my-zk-host:2181 --topic my-topic
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Kafka Configuration

A starting point

cloudera
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Flexible Configuration

 Tune for throughput or
safety

* At least once or at most
once

* Per topic overrides and
client overrides

CIOUdera © Cloudera, Inc. All rights reserved. a4



Broker Configuration

- 3 or more Brokers
- broker_max_heap_size=8GiB

- zookeeper.chroot=kafka
- auto.create.topics.enable=false
- If you must use it make sure you set
« num.partitions >= #OfBrokers
- default.replication.factor=3

« min.insync.replicas=2
- unclean.leader.election=false (default)

C|0Udera © Cloudera, Inc. All rights reserved. 45



Producer Configuration

- Use the new Java Producer

- acks=all

- retries=Integer. MAX_VALUE

- max.block.ms=Long.MAX_VALUE

- max.in.flight.requests.per.connection=1
- linger.ms=1000
e compression.type=snappy
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Consumer Configuration

- Use the new Java Consumer

- group.id represents the “Coordinated Application”
- Consumers within the group share the load

. auto.offset.reset = latest/earliest/none

- enable.auto.commit=false

C|0Udera © Cloudera, Inc. All rights reserved. a7



Choosing Partition Counts: Quick Pick

e Just getting started, don’t overthink it
* Don’t make the mistake of picking (1 partition)
* Don’t pick way too many (1000 partitions)

e Often a handwave choice of 25 to 100 partitions is a
good start

* Tune when you can understand your data and use case
better
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What’s Next?

Make something

YEOIERDAY

Getting started is the | 10U oAl
hardest part |
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Thank you




Common Questions
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How do | size broker hardware?

Brokers
- Similar profile to data nodes
- Depends on what’s important
- Message Retention = Disk Size
« Client Throughput = Network Capacity
« Producer Throughput = Disk I/O
« Consumer Throughput = Memory
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Kafka Cardinality—What is large?

 Brokers: 3->15 per Cluster  Partitions: 1->1000s per Topic
« Common to start with 3-5 e Clusters with up to 10k total
- Very large are around 30-40 nodes partitions are workable. Beyond

- Having many clusters is common that we don't aggressively test. [src]

« Consumer Groups: 1->100s active per

 Topics: 1->100s per Cluster
Cluster

 Could Consume 1 to all topics
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Large Messages

- Kafka is not designed for very large

messages
« Optimal performance ~10KB

- Could consider breaking up the
messages/files into smaller chunks
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Should | use Raid 10 or JBOD?

RAID10 JBOD

- Can survive single disk failure - Single disk failure kills broker
. Single log directory - More available disk space

. Lower total /O - Higher write throughput

- Broker is not smart about balancing
partitions across disk

cloudera
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Do | need a separate Zookeeper for Kaftka?

* [t’s not required but preferred

- Kafka relies on Zookeeper for cluster
metadata & state

- Correct Zookeeper configuration is most
important
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/ookeeper Configuration

» ZooKeeper's transaction log must be on a dedicated device (A dedicated
partition is not enough) for optimal performance

- ZooKeeper writes the log sequentially, without seeking
- Set datalogDir to point to a directory on that device
- Make sure to point dataDir to a directory not residing on that device

» Do not put ZooKeeper in a situation that can cause a swap

- Therefore, make certain that the maximum heap size given to ZooKeeper is
not bigger than the amount of real memory available to ZooKeeper
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Choosing Partition Counts

* A topic partition is the unit of parallelism in Kafka

* |t is easier to increase partitions than it is reduce them
*Especially when using keyed messages

*Consumers are assigned partitions to consume
*They can’t split/share partitions
*Parallelism is bounded by the number of partitions
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Choosing Partition Counts: Quick Pick

e Just getting started, don’t overthink it
* Don’t make the mistake of picking (1 partition)
* Don’t pick way too many (1000 partitions)

e Often a handwave choice of 25 to 100 partitions is a
good start

* Tune when you can understand your data and use case
better
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Choosing Partition Counts: Estimation

Given:

* pt=production throughput per partition

* ct=consumption throughput per partition
e tt =total throughput you want to achieve
* pc =the minimum partition count

Then:

* pc>= max(tt/pt, tt/ct)

cloudera
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Choosing Partition Counts: Tools

e Kafka includes rudimentary benchmarking tools to help you get a
rough estimate

» kafka-producer-perft-test.sh (kafka.tools.ConsumerPerformance)
e kafka-consumer-perf-test.sh (kafka.tools.ProducerPerformance)
e kafka.tools.EndToEndLatency

e Use with kafka-run-class.sh
* Nothing is more accurate than a real application
* With real/representative data
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How do | manage Schemas?

* A big topic with enough content for its own talk
* Options

*Schema Registry

*Source Controlled Dependency

Static "Envelop Schema”
{

“type": "record”, "name": "Event",
“fields": [
{ "name": "headers", "type": { "type": "map"”, "values": "string" } },
{ "name": "fields", "type": { "type": "map"”, "values": "bytes" } }
]
}
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