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Hi everyone!

● My academic background is in satellite meteorology
● For masters research, I studied snowfall using a satellite-based cloud radar 

(Cloudsat)
● Worked at UW Space Science & Engineering for several years with a group 

doing satellite-based cloud climatologies
● Started at Earthling in April 2016. Several things were new to me:

○ AWS and cloud processing
○ Land remote sensing (clouds are now annoying artifacts as opposed to object to study)
○ Proprietary algorithms (have to be careful what I say)



Previous work: cloud climatology using on-site 
compute cluster

● For a couple years prior to previous work, I worked for Andy Heidinger at the 
UW-Madison Cooperative Institute for Meteorological Satellite Studies 
(CIMSS) on a satellite-derived cloud* climatology (PATMOS-x) dating back to 
1979

● All processing was done with on-site hardware! No cloud** involved

*meteorological clouds **cloud computing



PATMOS-x: how to get coherent time series of 
global cloudiness from 15 poorly calibrated 
satellites?



They make it work!



All processing on-site! No Amazon involved!
● The “Slurm” scheduler was used for managing scheduling of compute jobs in 

cluster with tens of compute nodes and hundreds of cores
● “Lustre” was used to manage a multi-petabyte storage array
● All resources located in the Atmospheric Oceanic & Space Sciences building 

on UW campus
● Creating entire dataset (almost 40 years of data) was a multi-week project 

involving significant manual effort (and lots of Perl scripts)
● My job was to manage the processing and write Python analysis code to 

perform quality control on the final product



Fast forward to April 2016
● I get hired by Earthling, initially to work on a rewrite of an existing system for 

processing Landsat imagery into vegetation products for use in precision 
agriculture 

● The experience was a boot camp in:
○ Land/agriculture remote sensing
○ Amazon Web Services



Intro to Landsat - program history

(See next slide)

We start here

Launch failure



Intro to Landsat - Landsat 7 failure

● In May 2003, the Landsat 
7 Scan Line Corrector 
(SLC) failed permanently, 
resulting in these large 
gaps through much of the 
imagery

● Makes data largely 
unusable if interested in 
spatial patterns within a 
field



Physics reminder: the electromagnetic spectrum



Intro to Landsat - what does it observe?



Intro to Landsat - what does it observe?



Intro to Landsat - can make really nice pictures



Intro to Landsat - but, how to turn raw observations 
into useful products?

Landsat observations tell us how much energy the earth is 
reflecting across a wide variety of wavelengths. How is that 

useful for agriculture?



Intro to land remote sensing - theoretical basis for 
vegetation indices



Intro to land remote sensing - Normalized Difference 
Vegetation Index (NDVI)

Using what we know about spectral properties of vegetation, we can combine bands to 
learn whether a pixel contains vegetation (and how much).



Intro to land remote sensing - NDVI properties
● Always within range -1 to 1

○ Water: close to zero or slightly negative
○ Clouds and snow: less than 0
○ Green vegetation: 0.3 to 1 (dense vegetation will be close to 1)

● As simple as it gets. More complex algorithms can measure specific 
properties like:

○ Leaf Area Index (spatial coverage of vegetation)
○ Chlorophyll concentration (greenness of vegetation)



Intro to land remote sensing - NDVI example

Tweet us:

@WeAreEarthling #agmap 
[any address or city 
and state]

To get your own NDVI image!

Cloud contamination!



Intro to land remote sensing - utility in precision agriculture
● Historical performance: By observing 

vegetation products over a long period of 
time, a farmer can learn about the 
historical productivity (yield) of each of 
his/her fields

● Spatial variation within a field: Due to the 
high resolution of Landsat (30 meters), 
we can learn about spatial variation of 
performance within a single field, 
allowing the farmer to apply advanced 
management techniques like optimizing 
fertilizer inputs across the field, to 
achieve the greatest yield at the lowest 
cost



Now that you know why Landsat data is useful, I’ll 
tell you about the processing system we built for 

generating historical and real-time products for use 
in precision agriculture.



Landsat is “big data”
Global coverage (every 16 days) at 30 meter 
resolution!

Imagery is split into “scenes”

Scene count to date:

● Landsat 5: 2,285,693
● Landsat 7: 2,143,313
● Landsat 8: 1,111,446
● Total: 5,540,452

Scene coverage over Hawaii 
to show scale of each scene 
footprint



Landsat is “big data”
If you wanted to process all historical Landsat data globally:

(5,540,452 scenes) * (3 bands per scene) * (60MB per band) =

951 terabytes !

How to cope?

● Obvious first step: only process data over agricultural areas of interest during 
growing seasons

● Build a scalable processing system in the cloud



Landsat data sources
● Amazon has all Landst 8 data in a publicly accessible S3 bucket!

○ https://aws.amazon.com/public-datasets/landsat/

● Landsat 5 and Landsat 7 is available through a USGS API
○ Much slower than grabbing Landsat 8 via Amazon … several minutes per scene

https://aws.amazon.com/public-datasets/landsat/


Why scalable?
● Clearly have more processing to do than a single machine can accomplish in 

a reasonable amount of time, so need to scale out across multiple machines
● Resource requirements inherently change over time. Don’t want to pay for 

more resources than are currently being utilized.
○ Initial processing of all historical data of interest needs to be accomplished in a short enough 

period of time to meet business requirements
○ Ongoing resource requirements will be much lower

■ Process new imagery as it is acquired by satellites
■ Process imagery for new agricultural areas as new customers are acquired



Toolkit - Algorithm implementation

● Python
○ NumPy (fast vectorized array math)
○ Matplotlib (to visualize output during 

development)
○ Fiona and Shapely for geospatial geometry
○ Boto (Python wrapper of AWS API)

● GDAL (Geospatial Data Abstraction 
Library)

○ Resample bands with differing resolution
○ Crop imagery to some geometry of interest



Why did we rewrite in Python?
● Windows instances are expensive! New system 

can run on cheaper Linux instances
● Python has become a top choice for all kinds of 

scientific analysis; great selection of open 
source libraries for geospatial processing

● NumPy allows fast pixel-based manipulation of 
raster data without additional image processing 
software

Original implementation...
● C Sharp / .NET for data input/output and connections to AWS
● Proprietary object-based image analysis software for implementing algorithms themselves



PostGIS operator example - given some coordinates 
how do you know what imagery to process?



PostGIS operator example - database design
Given database tables in a PostGIS 
enabled Postgres database:

scene_footprints

footprint_geometry
(polygons)

path

row

fields

field_geometry 
(polygons)

landsat_scenes

scene_id

path

row



PostGIS operator example - the actual query
ST_Contains: check if some geometry lies completely within 
another geometry.



GDAL example: how do you clip an image to some 
arbitrary polygon?

?



Solution: use “gdalwarp”
gdalwarp 

-cutline polygon.geojson 

-crop_to_cutline 

LC80410262013181LGN00_B2.TIF 

cropped_result.TIF



Toolkit - AWS/cloud 
● EC2 compute instances running Ubuntu 14.04, using spot pricing to minimize 

cost
● SaltStack for provisioning new instances as they come online
● Simple Workflow Service (SWF) for managing tasks across multiple compute 

instances
● Simple Storage Service (S3) for storage of algorithm results
● Postgres database for tracking state of processing jobs

○ with PostGIS for spatial queries



Simple Workflow Service (SWF) overview



Simple Workflow Service (SWF) vs. Simple Queue 
Service (SQS)

Message 
producer

Message 
consumer 
(worker)

Amazon API

SQS

Message 
producer

Message 
consumer 
(worker)

Amazon 
API

SWF

Amazon 
API

“Decider” 
(user code!)



How we use SWF
We use the relational database to do all our state tracking as opposed to putting 
much logic into deciders

So, SWF currently doesn’t provide much benefit over SQS for our purposes

SWF has been cumbersome to work with at times:

● Decider adds extra piece to deploy and debug
● Terminology is complex and can be confusing
● Too generalized for our use case

Example where we do actually use custom decider logic: retry failed jobs at 
increasing interval



Overall processing flow

Postgres database

Single job creator 
daemon Worker(s)

Amazon SWF

Send new jobs to queue
Pull jobs from queue

Determine what 

processing is needed
Update job sta

tus

Amazon S3

Data in/out



Job order dependency
Atmospheric 

correction
Atmospheric 

correction
Atmospheric 

correction
Atmospheric 

correction
Scene 1 Scene 2 Scene 3 Scene 4

Vegetation product Vegetation product Vegetation product Vegetation product
Scene 1 Scene 2 Scene 3 Scene 4

Vegetation mask
(combines all scenes)

Vegetation product Vegetation product Vegetation product Vegetation product
Scene 1 Scene 2 Scene 3 Scene 4

Field 1

Field 2



General flow of each job
Read message from SWF defining job type, scene of interest, other details

Download input data from S3

Manipulate data as needed (atmospheric correction, vegetation algorithm)

Upload result to S3

Inform SWF of task completion

At every step, the database is updated as needed to indicate success or 
failure. The daemon process uses this information to determine what 

further processing tasks need to be kicked off.



Scaling strategy
● One scale group for each type of task:

○ Atmospheric correction (longest: large download, then lots of CPU usage by GDAL)
○ Vegetation mask creation
○ Vegetation product algorithm (shortest: smaller download, algorithm itself is fast)

● Multiple scale groups allow us to ensure each task type is completed quickly 
without wasting resources

● Auto-scaling is a work in progress. Can scale based on:
○ CPU usage
○ I/O
○ Time to complete task

● But, determining proper thresholds for each of those is difficult. 
○ Currently we are still scaling each group manually as needed. 
○ However, scaling up is “push button”: increase size of a scale group and new instances are 

provisioned automatically with SaltStack



Challenge: clouds and cloud shadows



Challenge: bad field boundary causes us to process 
most of North America



Challenge: unexpected SWF limits
Can be either helpful or annoying depending on the situation

Limits on Workflow Executions

● Maximum open workflow executions – 100,000 per domain

● This count includes child workflow executions.

● Maximum workflow execution time – 1 year

● Maximum workflow execution history size – 25,000 events

● Maximum child workflow executions – 1,000 per workflow execution.

● Workflow execution idle time limit – 1 year (constrained by workflow execution time limit)

● You can configure workflow timeouts to cause a timeout event to occur if a particular stage of your workflow takes 

too long.

● Workflow retention time limit – 90 days

● After this time, the workflow history can no longer be retrieved or viewed. There is no further limit to the number of 

closed workflow executions that are retained by Amazon SWF.

http://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-timeout-types.html


Conclusion

We built a scalable cloud processing system to 
turn 30+ years of high resolution satellite data 

into a useful business product that covers large 
swaths of agricultural North America!
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