

A scalable system for processing the
historical Landsat satellite imagery

record
Mike Hiley

Earthling Interactive
Big Data Wisconsin 2017

Outline
● Introduce myself
● Intro to Landsat
● Land remote sensing 101
● Motivation for building this system
● Intro to geospatial tools
● Design of scalable cloud-based processing system
● Unexpected challenges
● Conclusion

Hi everyone!

● My academic background is in satellite meteorology
● For masters research, I studied snowfall using a satellite-based cloud radar

(Cloudsat)
● Worked at UW Space Science & Engineering for several years with a group

doing satellite-based cloud climatologies
● Started at Earthling in April 2016. Several things were new to me:

○ AWS and cloud processing
○ Land remote sensing (clouds are now annoying artifacts as opposed to object to study)
○ Proprietary algorithms (have to be careful what I say)

Previous work: cloud climatology using on-site
compute cluster

● For a couple years prior to previous work, I worked for Andy Heidinger at the
UW-Madison Cooperative Institute for Meteorological Satellite Studies
(CIMSS) on a satellite-derived cloud* climatology (PATMOS-x) dating back to
1979

● All processing was done with on-site hardware! No cloud** involved

*meteorological clouds **cloud computing

PATMOS-x: how to get coherent time series of
global cloudiness from 15 poorly calibrated
satellites?

They make it work!

All processing on-site! No Amazon involved!
● The “Slurm” scheduler was used for managing scheduling of compute jobs in

cluster with tens of compute nodes and hundreds of cores
● “Lustre” was used to manage a multi-petabyte storage array
● All resources located in the Atmospheric Oceanic & Space Sciences building

on UW campus
● Creating entire dataset (almost 40 years of data) was a multi-week project

involving significant manual effort (and lots of Perl scripts)
● My job was to manage the processing and write Python analysis code to

perform quality control on the final product

Fast forward to April 2016
● I get hired by Earthling, initially to work on a rewrite of an existing system for

processing Landsat imagery into vegetation products for use in precision
agriculture

● The experience was a boot camp in:
○ Land/agriculture remote sensing
○ Amazon Web Services

Intro to Landsat - program history

(See next slide)

We start here

Launch failure

Intro to Landsat - Landsat 7 failure

● In May 2003, the Landsat
7 Scan Line Corrector
(SLC) failed permanently,
resulting in these large
gaps through much of the
imagery

● Makes data largely
unusable if interested in
spatial patterns within a
field

Physics reminder: the electromagnetic spectrum

Intro to Landsat - what does it observe?

Intro to Landsat - what does it observe?

Intro to Landsat - can make really nice pictures

Intro to Landsat - but, how to turn raw observations
into useful products?

Landsat observations tell us how much energy the earth is
reflecting across a wide variety of wavelengths. How is that

useful for agriculture?

Intro to land remote sensing - theoretical basis for
vegetation indices

Intro to land remote sensing - Normalized Difference
Vegetation Index (NDVI)

Using what we know about spectral properties of vegetation, we can combine bands to
learn whether a pixel contains vegetation (and how much).

Intro to land remote sensing - NDVI properties
● Always within range -1 to 1

○ Water: close to zero or slightly negative
○ Clouds and snow: less than 0
○ Green vegetation: 0.3 to 1 (dense vegetation will be close to 1)

● As simple as it gets. More complex algorithms can measure specific
properties like:

○ Leaf Area Index (spatial coverage of vegetation)
○ Chlorophyll concentration (greenness of vegetation)

Intro to land remote sensing - NDVI example

Tweet us:

@WeAreEarthling #agmap
[any address or city
and state]

To get your own NDVI image!

Cloud contamination!

Intro to land remote sensing - utility in precision agriculture
● Historical performance: By observing

vegetation products over a long period of
time, a farmer can learn about the
historical productivity (yield) of each of
his/her fields

● Spatial variation within a field: Due to the
high resolution of Landsat (30 meters),
we can learn about spatial variation of
performance within a single field,
allowing the farmer to apply advanced
management techniques like optimizing
fertilizer inputs across the field, to
achieve the greatest yield at the lowest
cost

Now that you know why Landsat data is useful, I’ll
tell you about the processing system we built for

generating historical and real-time products for use
in precision agriculture.

Landsat is “big data”
Global coverage (every 16 days) at 30 meter
resolution!

Imagery is split into “scenes”

Scene count to date:

● Landsat 5: 2,285,693
● Landsat 7: 2,143,313
● Landsat 8: 1,111,446
● Total: 5,540,452

Scene coverage over Hawaii
to show scale of each scene
footprint

Landsat is “big data”
If you wanted to process all historical Landsat data globally:

(5,540,452 scenes) * (3 bands per scene) * (60MB per band) =

951 terabytes !

How to cope?

● Obvious first step: only process data over agricultural areas of interest during
growing seasons

● Build a scalable processing system in the cloud

Landsat data sources
● Amazon has all Landst 8 data in a publicly accessible S3 bucket!

○ https://aws.amazon.com/public-datasets/landsat/

● Landsat 5 and Landsat 7 is available through a USGS API
○ Much slower than grabbing Landsat 8 via Amazon … several minutes per scene

https://aws.amazon.com/public-datasets/landsat/

Why scalable?
● Clearly have more processing to do than a single machine can accomplish in

a reasonable amount of time, so need to scale out across multiple machines
● Resource requirements inherently change over time. Don’t want to pay for

more resources than are currently being utilized.
○ Initial processing of all historical data of interest needs to be accomplished in a short enough

period of time to meet business requirements
○ Ongoing resource requirements will be much lower

■ Process new imagery as it is acquired by satellites
■ Process imagery for new agricultural areas as new customers are acquired

Toolkit - Algorithm implementation

● Python
○ NumPy (fast vectorized array math)
○ Matplotlib (to visualize output during

development)
○ Fiona and Shapely for geospatial geometry
○ Boto (Python wrapper of AWS API)

● GDAL (Geospatial Data Abstraction
Library)

○ Resample bands with differing resolution
○ Crop imagery to some geometry of interest

Why did we rewrite in Python?
● Windows instances are expensive! New system

can run on cheaper Linux instances
● Python has become a top choice for all kinds of

scientific analysis; great selection of open
source libraries for geospatial processing

● NumPy allows fast pixel-based manipulation of
raster data without additional image processing
software

Original implementation...
● C Sharp / .NET for data input/output and connections to AWS
● Proprietary object-based image analysis software for implementing algorithms themselves

PostGIS operator example - given some coordinates
how do you know what imagery to process?

PostGIS operator example - database design
Given database tables in a PostGIS
enabled Postgres database:

scene_footprints

footprint_geometry
(polygons)

path

row

fields

field_geometry
(polygons)

landsat_scenes

scene_id

path

row

PostGIS operator example - the actual query
ST_Contains: check if some geometry lies completely within
another geometry.

GDAL example: how do you clip an image to some
arbitrary polygon?

?

Solution: use “gdalwarp”
gdalwarp

-cutline polygon.geojson

-crop_to_cutline

LC80410262013181LGN00_B2.TIF

cropped_result.TIF

Toolkit - AWS/cloud
● EC2 compute instances running Ubuntu 14.04, using spot pricing to minimize

cost
● SaltStack for provisioning new instances as they come online
● Simple Workflow Service (SWF) for managing tasks across multiple compute

instances
● Simple Storage Service (S3) for storage of algorithm results
● Postgres database for tracking state of processing jobs

○ with PostGIS for spatial queries

Simple Workflow Service (SWF) overview

Simple Workflow Service (SWF) vs. Simple Queue
Service (SQS)

Message
producer

Message
consumer
(worker)

Amazon API

SQS

Message
producer

Message
consumer
(worker)

Amazon
API

SWF

Amazon
API

“Decider”
(user code!)

How we use SWF
We use the relational database to do all our state tracking as opposed to putting
much logic into deciders

So, SWF currently doesn’t provide much benefit over SQS for our purposes

SWF has been cumbersome to work with at times:

● Decider adds extra piece to deploy and debug
● Terminology is complex and can be confusing
● Too generalized for our use case

Example where we do actually use custom decider logic: retry failed jobs at
increasing interval

Overall processing flow

Postgres database

Single job creator
daemon Worker(s)

Amazon SWF

Send new jobs to queue
Pull jobs from queue

Determine what

processing is needed
Update job sta

tus

Amazon S3

Data in/out

Job order dependency
Atmospheric

correction
Atmospheric

correction
Atmospheric

correction
Atmospheric

correction
Scene 1 Scene 2 Scene 3 Scene 4

Vegetation product Vegetation product Vegetation product Vegetation product
Scene 1 Scene 2 Scene 3 Scene 4

Vegetation mask
(combines all scenes)

Vegetation product Vegetation product Vegetation product Vegetation product
Scene 1 Scene 2 Scene 3 Scene 4

Field 1

Field 2

General flow of each job
Read message from SWF defining job type, scene of interest, other details

Download input data from S3

Manipulate data as needed (atmospheric correction, vegetation algorithm)

Upload result to S3

Inform SWF of task completion

At every step, the database is updated as needed to indicate success or
failure. The daemon process uses this information to determine what

further processing tasks need to be kicked off.

Scaling strategy
● One scale group for each type of task:

○ Atmospheric correction (longest: large download, then lots of CPU usage by GDAL)
○ Vegetation mask creation
○ Vegetation product algorithm (shortest: smaller download, algorithm itself is fast)

● Multiple scale groups allow us to ensure each task type is completed quickly
without wasting resources

● Auto-scaling is a work in progress. Can scale based on:
○ CPU usage
○ I/O
○ Time to complete task

● But, determining proper thresholds for each of those is difficult.
○ Currently we are still scaling each group manually as needed.
○ However, scaling up is “push button”: increase size of a scale group and new instances are

provisioned automatically with SaltStack

Challenge: clouds and cloud shadows

Challenge: bad field boundary causes us to process
most of North America

Challenge: unexpected SWF limits
Can be either helpful or annoying depending on the situation

Limits on Workflow Executions

● Maximum open workflow executions – 100,000 per domain

● This count includes child workflow executions.

● Maximum workflow execution time – 1 year

● Maximum workflow execution history size – 25,000 events

● Maximum child workflow executions – 1,000 per workflow execution.

● Workflow execution idle time limit – 1 year (constrained by workflow execution time limit)

● You can configure workflow timeouts to cause a timeout event to occur if a particular stage of your workflow takes

too long.

● Workflow retention time limit – 90 days

● After this time, the workflow history can no longer be retrieved or viewed. There is no further limit to the number of

closed workflow executions that are retained by Amazon SWF.

http://docs.aws.amazon.com/amazonswf/latest/developerguide/swf-timeout-types.html

Conclusion

We built a scalable cloud processing system to
turn 30+ years of high resolution satellite data

into a useful business product that covers large
swaths of agricultural North America!

Acknowledgements
Earthling Interactive for letting me spend time on this talk

Everyone at Earthling for all their help at every step of this work

Thanks!

